ANALYSIS OF THE THERMAL PROCESS IN A RECTANGULAR
PARALLELEPIPED AND SOLID CYLINDER FOR A
TIME-DEPENDENT TEMPERATURE OF THE AMBIENT
MEDIUM

V. Reis UDC 536.212

A method is presented for computing the temperature change based on the exact solution of
the heat conduction equation under the assumption of the Newton cooling law. The tempera-
ture of the ambient medium is here approximated by a piecewise-linear function of the time.

The heating or cooling of bodies subjected to a time-dependent temperature of the ambient medium
occurs quite often in practice. It is interesting to find the temperature distribution for these cases.

If it is assumed that the body is heated (cooled) in a furnace, then the temperature in the combustion
chamber will be taken as the temperature of the ambient medium, However, it is impossible to give an
analytical expression for the temperature in the combustion chamber of any furnace since a large number
of parameters (such as the power used, the specific heat of the heat loss, as well as the state of the regula-
tor, for example) affect the temperature characteristic. Hence, the single reasonable method of giving the
time dependence of the temperature in practice is the analytical approximation of empirical data, The ap-
proximation of the temperature—time function by means of a piecewise-linear function turns out to be es-
pecially simple. Such a form permits achievement of any accuracy, as well as being convenient for math-
ematical processing.

A curve of furnace heating approximated by the inscribed polygonal line is shown in Fig, 1.
It is easy to see that the heating temperature &, (t) for the time interval ty, =t =<ty ;4 has the form

m—1
ﬁm (t) = Pmt +52 (Pn - Pn+1)tn+1 + Q1- (1)

n==1
If any homogeneous and isotropic body with surface A on which natural heat exchange occurs in con-

formity with the Newton cooling law is considered, then the temperature 4P, t) at the point P within the
body is determined up to the time t by the solution of the boundary-value problem

D{ (P, 1)} = a—“’f)§i~am(a f)=0, 6(P, 0)= 9, — const,
(2)
L{B(P, 1) = [% .i‘%lljuﬁ(a t)] — (), t>0.
t A

The function ¢ () is the time-varying temperature of the ambient medium, and it will henceforth be
replaced by the functions Sy (t) in conformity with (1).

By using the expression
B2, )= (P, 1) +9,(P, 1) (3)
we obtain from the system (2) for the function (P, t)

D {8, (P, t)} =0, 8,(P, 0)= 9,

(4)
LB, (P, t)} =0, >0
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and for the function (P, t)
D{®, (P, ) =0, 8,(P, 0)=0;
L{&,(P, ) = (®).

The solution of the homogeneous problem (4) is standard
and has the form

(5)

8,(P, 1) = i A, (P) exp(—a &), (6)

v=z]

Q,)

Sh—————

% tl‘ z where u,(P) is the complete system of eigenfunctions
G % 4 ¢ : with corresponding eigenvalues §,. From the initial
Fig. 1. Furnace heating curve. condition we obtain the relationship

'&a = i Avuv (P)v (7)

y=1
from which the Fourier coefficients are determined

A, =9, fu, (P av. (8)

k

We find the solution of the inhomogeneous problem (5) from [1] by using the Duhamel theorem
t
0P 0 = [0t T-0,(p, 1= 1)an, ®
o

where (P, t) is the solution of the inhomogeneous problem

D{8,(P, H} =0, 8,(P, 0)="0;

(10)
L{o,(P, =1, t>0.
By means of the substitution
(P, ) =9.(P, H—1 (11)
it can be reduced to the homogeneous problem
L{os(P, t)} =0, >0,
whose solution is already known. Using (6)-(8), we obtain
B,(P, )= 1 — X Au,(P)exp(—a), (13)
s
= 2 Avuv (P) (14)
v=1
and
A,= {u,Pyav. (15)
k
Substituting (9) into (13) we find
3 o ® 1
8 (P, )= f PR 2 A, (P)8aexp (— ads(t — A)dA = > Auy(P) 5 @ (M) a8iexp(— a byt — A)dA. (16)
0 y=1 v=I1 0

An expression for the ambient temperature varying along the polygonal line is introduced into this
equation as the temperature of the ambient medium as a function of the time ¢ (t). Since (1) is valid only
for the time interval, it is necessary to separate the integral in (16) also in conformity with the domains
of the intervals, We obtain

e 2 ta
(P = A, (P) [ tj B, (M) adZexp (— a 82 (t— A)dA + g B, (M) adlexp (— adi(t —A)dA
V= [1]

ta

+ f 8, (Madiexp (— a 8% (t — A) d x]. : (17)
4

m
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Using (1), we find for the integrand

2, 4 2 2
Jy = exp(— adit) 3 B, (M a by exp (a SA)d A
i

— [(Ph - 63 + E(P — Pn—l) fn+1 T Ql) exp (aéQA,):' exp (—-— asft) (18)

If the integral is determined, then we obtain for (17)

m—1

8y (P, t) = EAu (P (Pt {—E(P — Pl + Q)

v=I1

- P, —P, (- P
— B A HV(P) v ( I—l) exp(2a V( +1 )) + (Ql__ 12 ) exp(‘—aﬁv)_l_ 2 1 (19)
- ady ady abdy |
for the domain tm =t= tm+1'
If (1) and (14) are used for the first expression in the right side, then we obtain
« m—1
= N (P, — P, )exp(add(t,,,—1)
B (P, )=, () — E:Avu p{ n =Py v (s
' ( @ }.4 as?
V=] n=l
Q=T exp(—athy + - } (20)
\ & / ady

for the time interval ty, =t = ty 4y,

We therefore find the general solution for the heat conduction equation for the case when the tempera-
ture of the ambient medium varying according to the polygonal line is given on the surface A. In confor-
mity with (3) and the solutions (6) and (20), and also because of the relationship A, = &, - A, which follows
from (8) and (15), we obtain

2
,ﬁ.(P t) - ,& (t) . v A u (P) {\1 (P n+1)exp ( aév (tn+1 _t))

2
ady

'v—l —_l

P
+ (Ql 8- ) exp (—aB) + 2

v

for the time interval t;, =t =ty 44.

Particular solutions for separate body shapes can be obtained from the general solution (21) and are
distinguished only by different eigenvalues which can be found in the literature,

The difficulties which can originate in solving multidimensional problems can easily be eliminated
since, in conformity with (4) or (12), we obtain the multidimensional solution in the form of the product of
one-dimensional solutions for appropriate individual coordinate directions for the homogeneous problem.

Using one-dimensional solutions for plates with diverse heat-transfer coefficients [2] on both bound-
ary surfaces, we obtain the following solution for a rectangular parallelepiped:

—1

O (xy, X5 x5 H) =P t‘i”E(P — P+ @ — 2 i izil

n=1 f1=| {2=I1 {3=1

pang P

1.,A. B cos (Byyxy) -+ Sin (kux,) ({22

X Auths .ﬂ [hm (Bugt) + sin & ”)}{aE

iy =1 )
. v (Py—Pro)exp@E (s —1) <Q1 Lo, P )exp(__agt)} 22
n_l aE aE
for t, = t, where [, is the length of an edge of the rectangular parallelepiped, hy, is the relative heat-trans-

fer coefflclent Ma on the surface x,, = 1; hg, is the relative heat-transfer coefficient A/ on the surface
XV = O;
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= (k) + ki + kis); , (23)

- , ko \2 )
A, = 2[1 — cos (byudy) — 22 sin (k,.vl,,)] /kivlv{l n (——) L4 [cos () — 22 sin (k”l”)J} 24)
ho-v hov h()vlv l'vlv hov
and kjp is given by the eigenvalue equation
1 O A A
cot (kly) = { (V) gy Nuyly) } 25)
T bty UL (kuohy)

Using the solutions for a plate and an infinite cylinder from [1], we obtain the following solution for a
solid infinite cylinder by the same method:

O(r, 2, )= Pt +m2_l(pn_Pn+1)t,,+1 -+ Q‘_gg [ cos (k,2) + sin (»; z)] (—%{ r){ f;’;l

n——l

N 2(;) —P,.) exp (@E; (tnyy — )) : (Q1 + 9, i) exp (— akyp) } )
aE,

n==1
for ty, < t, where I is the height of the cylinder, R is the cylinder radius, hy is the relative heat-transfer
coefficient A/o on the surface r = R, h; is the relative heat-transfer coefficient Mo on the surface z = 0,
h; is the relative heat-transfer coefficient A/« on the surface z = 1,

= (£ + (¢;/R); @7)
2

e+ (] T

A; is analogous to (24) and k; and ¢4 from the equations for the eigenvalues

!

(28)

WP (kid) _ _(hel) (ReD) 29
cot (&,0) = PRy { / *) }’ 29)
JO(C]-) - Cj . (30)

Ic)  Rhz

The numerical solution for a solid cylinder can be obtained by using an electronic computer,
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